¹²C(¹⁶O, ¹²C) **1979Do01**

History			
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968, 71 (2017)	1-Jan-2017

1979Do01: ${}^{12}C({}^{16}O, {}^{12}C)$ E=315 MeV; measured $\sigma(E, \theta)$.

1994Su09: ¹²C(¹⁶O, ¹²C) E=28.5-33.5 MeV; measured magnetic substate population for ¹²C*(4.44 MeV), deduced intermediate structure resonances.

1995Fr05: ¹²C(¹⁶O, ¹²C) E=99 MeV; measured Q-value spectra.

1996Fr09: ¹²C(¹⁶O, ¹²C) E=51-66 MeV; measured Q-value spectra.

2004Su10: 12 C(16 O, 12 C) E=17.4-23 MeV; measured E_{γ}, I_{γ} (particle) γ coincidences.

2006Sz06: ¹²C(¹⁶O, ¹²C) E=62-124 MeV; measured particle spectra.

2011Ha23: 12 C(16 O, 12 C) E=20,24,28 MeV, measured E(particle), I(particle, θ). Deduced $\sigma(\theta)$, optical potential parameters.

2014Oh04: XUNDL dataset compiled by TUNL, 2014.

The authors analyzed the Airy structures present in inelastic $^{16}\text{O}+^{12}\text{C}$ scattering to $^{12}\text{C}*(4.44 \text{ MeV})$ using 170-280 MeV ^{16}O beams, from the Jyvaskyla cyclotron. Scattered particles were detected at $\theta_{\text{c.m.}}=7^{\circ}-40^{\circ}$ using a position sensitive $\Delta\text{E-E}$ Si detector telescope; at larger angles ($\theta_{\text{c.m.}}>40^{\circ}$) a position sensitive gas proportional counter/Si detector $\Delta\text{E-E}$ array was used. Analyzed angular distributions for scattering to $^{12}\text{C}*(4.44 \text{ MeV}: J^{\pi}=2^{+})$ via an extended double folding coupled-channels model. The angular distributions are well reproduced with an emphasis on the large angle so-called rainbow region where diffraction effects and Airy structures are prominent. Discussed the couplings between elastic and inelastic components. See also (2015Ma12).

¹²C Levels

 $\frac{\text{E(level)}}{0}$ $\frac{0}{4.44 \times 10^{3}}$ 7.65×10^{3} 9.64×10^{3} $10.8 \times 10^{3\dagger}$ 14.1×10^{3} $15.8 \times 10^{3\dagger}$ $21.6 \times 10^{3\dagger}$ $25.3 \times 10^{3\dagger}$ $26.7 \times 10^{3\dagger}$ $26.7 \times 10^{3\dagger}$ $27.6 \times 10^{3\dagger}$ $28.7 \times 10^{3\dagger}$ $28.7 \times 10^{3\dagger}$ $29.7 \times 10^{3\dagger}$

[†] From (1979Do01).